Resilience Toolbox

Resilience tools can be useful for a wide range of practitioners but it can be hard to find the right tool for the job. We have assessed a wide range of tools, which are listed below, mapped by the resilience value they add at different stages of the infrastructure lifecycle. Use the filters to break down the results by sector and user type.

  • Phase

  • Type

  • Maturity

  • Region

  • Value chain stage

35 items

REDi

Resilience-based Earthquake Design Initiative


To provide building owners, architects and engineers a framework for resilience-based earthquake design, specifically related to the new development of a building. The framework is not designed for use on existing structures.

Read more...

REDi  

Resilience-based Earthquake Design Initiative

The REDi Rating System is developed by Arups Advanced Technology and Research team, it proposes a framework for owners, architects, and engineers to implement ‘resilience-based earthquake design’ to new development. It describes design and planning criteria to enable owners to resume business operations and provide liveable conditions quickly after an earthquake, according to their desired resilience objectives. It also presents a loss evaluation methodology for assessing the success of the adopted design and planning measures in meeting the resilience objectives.

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse


To provide building owners, architects and engineers a framework for resilience-based earthquake design, specifically related to the new development of a building. The framework is not designed for use on existing structures.

Phase

Type – Open source

Maturity

Region

Key aims Somewhere in between? - it is a very sophisticated risk tool but is about one specific hazard and 'knowns' opposed to 'unknowns'. Yet it does look at wider underlying system capacity or wider holistic Qs or contribution and performance

Sector-specific? Yes

Developed by
Arup

UrbanSim

UrbanSim Modelling Methodology

Read more...

UrbanSim  

UrbanSim Modelling Methodology

UrbanSim leverages state-of-the-art urban simulation, 3D visualization, and shared open data to empower users to explore, gain insights into, and develop and evaluate alternative plans to improve their communities. UrbanSim is a simulation platform for supporting planning and analysis of urban development, incorporating the interactions between land use, transportation, the economy, and the environment.

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

Phase ,

Type – Off-shelf

Maturity

Region

Sector-specific? Yes

Developed by
UrbanSim Inc.

World Bank Climate & Disaster Risk Screening Tools


Project developers (project level tools available) , public sector (policy level tools available)

Read more...

World Bank Climate & Disaster Risk Screening Tools  

Self-assessment tools provide a systematic, consistent, and transparent way of considering short- and long-term climate and disaster risks in project and national/sector planning processes. The tools target a range of sectors (both national/ policy and project levels): national plans, agricultural, coastal flood protection, energy, health, roads, water, etc.

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse


Project developers (project level tools available) , public sector (policy level tools available)

Phase

Type – log in is needed for assess screening tools

Maturity

Region

Sector-specific? Yes

Developed by
World Bank

SimCenter

Computational Modeling and Simulation Center

Read more...

SimCenter  

Computational Modeling and Simulation Center

The Computational Modeling and Simulation Center (SimCenter) provides next-generation computational modeling and simulation software tools, user support, and educational materials to the natural hazards engineering research community with the goal of advancing the nation’s capability to simulate the impact of natural hazards on structures, lifelines, and communities. In addition, the Center will enable leaders to make more informed decisions about the need for and effectiveness of potential mitigation strategies.

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

Surging Seas

Sea Level Rise and Extreme Sea Level Analysis Service

Read more...

Surging Seas  

Sea Level Rise and Extreme Sea Level Analysis Service

This app exposes information from global climate models combined with datasets on vertical land movement on a local level, and shows this with local population density information (which clearly shows the extend of coastal cities), offering opportunities for data presentation previously unavailable to a wider audience.

The extreme sea levels analysis tool includes the latest historical storm surge data for the globe, high tide events, and sea levels changes caused by lower atmospheric pressure and severe winds during storms in climate scenarios.

Aside from the SLR tool, there are other similar tools as part of the same tool developer that analyse other indicators such as climate change scenarios and baseline data generation, drought monitoring, heat index, etc.

View case study

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

Phase

Type – Open Source

Maturity

Region

Sector-specific? Yes

Developed by
Climate Central

OpenSees

The Open System for Earthquake Engineering Simulation

Read more...

OpenSees  

The Open System for Earthquake Engineering Simulation

A centerpiece of PEER’s program is new research on simulation models and computational methods to assess the performance of structural and geotechnical systems. Breaking the barriers of traditional methods and software development protocols, PEER has embarked on a completely new approach in the earthquake engineering community by developing an open-source, object-oriented software framework. OpenSees is a collection of modules to facilitate the implementation of models and simulation procedures for structural and geotechnical earthquake engineering. By shared development using well-designed software interfaces, the open-source approach has affected collaboration among a substantial community of developers and users within and outside of PEER. Unique among software for earthquake engineering, OpenSees allows integration of models of structures and soils to investigate challenging problems in soil-structure-foundation interaction. In addition to improved models for reinforced concrete structures, shallow and deep foundations, and liquefiable soils, OpenSees is designed to take advantage of the latest developments in databases, reliability methods, scientific visualization, and high-end computing.

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

Phase ,

Type – Open source

Maturity

Region

Key aims Resilience

Sector-specific? Yes

QRE

Quick Risk Estimation tool

Read more...

QRE  

Quick Risk Estimation tool

The Quick Risk Estimation tool is designed for the purposes of identifying and understanding current and future risk/ stress/ shocks and exposure threats to both human and physical assets. The QRE tool is not a full scale risk assessment, rather a multi-stakeholder engagement process to establish a common understanding. Taking into account the actions or corrective measures already undertaken, the QRE will produce a dashboard-style risk assessment advising the risks and hazard to human and physical assets, impacts of identified main risk and associated perils on the specified location and/or particular assets.

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

Phase

Type – Open Source

Maturity

Region

Key aims Risk (not really, it is a tool for mutli-stakeholder engagemnet process to establish a common understanding)

Sector-specific? Yes

CB-Cities

Read more...

CB-Cities  

Berkeley group is actively developing such a large-scale and high-fidelity traffic simulation model for several big cities around the world. It builds upon the concept of Agent Based Modelling (ABM), where individual citizens are represented by intelligent agents. An agent is capable of navigating in a graph representation of the city’s road network along an optimum path, while maintaining interactions with other agents and dynamically re-planning the route in response to traffic congestion or road closures. The model can accommodate millions of agents and run simulations as in real time.

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

SmartScan

Read more...

SmartScan  

The SuRe SmartScan contributes to action items addressing two challenges (Capital Investment Planning Poor, and/or Non Climate-Smart, Local Development Planning Poor, including Resilience) of the City Creditworthiness Self-Assessment & Action Planning Toolkit of the World Bank.

Increase your infrastructure project’s attractiveness to investors in only a few steps. The GIB SmartScan allows you to assess your projects based on its Environmental, Social, and Governance (ESG) issues and helps to efficiently flag risks and opportunities for improvements of your project. This process helps you to identify and therefore eliminate risks and to improve the ESG aspects of the assessed project, which is increasingly a mandatory consideration for investors in their investment decisions.

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

Phase

Type – Commercial off-shelf

Maturity

Region

Key aims Risk

Sector-specific? Yes

CWRA

City Water Resilience Approach




Primarily government, owners and operators, but all stakeholders potentially

Read more...

CWRA  

City Water Resilience Approach

The City Water Resilience Approach (CWRA) responds to a demand for innovative approaches and tools that help cities build water resilience at the urban scale. The CWRA was developed to help cities grow their capacity to provide high quality water resources for all residents, to protect them from water-related hazards, and to connect them through water-based transportation networks (“provide, protect, connect”).

The approach is the result of fieldwork and desk research, collaborative partnerships with subject matter experts, and direct engagement with city partners. Based on this research, the CWRA outlines a process for developing urban water resilience, and provides a suite of tools to help cities grow their capacity to survive and thrive in the face of water-related shocks and stresses. The approach details five steps to guide cities through initial stakeholder engagement and baseline assessment, through action planning, implementation and monitoring of new initiatives that build water resilience.

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse




Primarily government, owners and operators, but all stakeholders potentially

Phase , , ,

Type

Maturity

Region

Sector-specific? Yes

PCVA

Participatory Capacity and Vulnerability Analysis

Read more...

PCVA  

Participatory Capacity and Vulnerability Analysis

Oxfam’s participatory capacity and vulnerability analysis (PCVA) tool is a risk analysis process designed to help staff and partner organisations engage with communities in contexts where natural disasters are significant drivers of poverty and suffering. PCVA has its roots in two proven social development methodologies. First, it stems from capacity and vulnerability analysis (CVA) methodology. This has long enabled development and humanitarian aid workers to design programmes based on a community’s capacities as well as its vulnerabilities. It recognises that vulnerable people have capacities to cope with adversity and can take steps to improve their lives, however difficult their situation may be. Second, it is rooted in the belief that enabling communities to genuinely participate in programme design, planning, and management leads to increased ownership, accountability and impact, and is the best way to bring about change. PCVA draws on a wide range of participatory learning and action (PLA) techniques and tools that are designed to channel participants’ ideas and efforts into a structured process of analysis, learning, and action planning, with the overall aim of reducing a community’s disaster risk.

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

Phase

Type – Practitioner's guide available on website

Maturity

Sector-specific? Yes

Developed by
Oxfam

CRIDA

Climate Risk Informed Decision Analysis


Decision makers, planners, engineers

Read more...

CRIDA  

Climate Risk Informed Decision Analysis

CRIDA provides stepwise planning guidance for water resources planners, managers, and engineers to implement robust water management as promoted by the AGWA network — particularly for water managers working in the developing world. CRIDA will initially launch as a publication, and support a community of practice to rapidly scale up implementation.

View case study

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse


Decision makers, planners, engineers

Phase ,

Type – An approach set out in a book

Maturity

Region

Sector-specific? Yes

Developed by
AGWA

Simulating Critical Infrastructures

Infrastructure operators

Read more...

Simulating Critical Infrastructures  

This simulation software allows you to calculate the cascade effects using various impact indicators, from number of people affected to projected costs. A variety of techniques are used to visualize the scenarios, including standard reports, 2D and 3D interfaces and full-blown virtual reality representations. To create the future you want, this tool helps you see the future you want to avoid.

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

Infrastructure operators

Phase , ,

Type – Request Demo

Maturity

Region

Sector-specific? Yes

Developed by
SIM-CI

Resilience Garage



Infrastructure owners, designers, community groups, environmental organisations, constructors, regulators, policy makers, etc.

Read more...

Resilience Garage  

The Resilience Garage assembles a group of 20-25 experts from across sectors and disciplines with the aim to peer review and to identify opportunities to better understand or solve challenging problems. This is done through either specific resilient projects (projects that have multiple benefits and address multiple issues) or by developing key focus areas for further consideration. It is practical – aiming for concrete recommendations – as well as fundamental – rigorously applying a rich resilience toolset. It applies the learning and tools developed following a two-year collaboration that explored how to make resilience more actionable.

View case study

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse



Infrastructure owners, designers, community groups, environmental organisations, constructors, regulators, policy makers, etc.

Phase ,

Type – Open source

Maturity

Region

Sector-specific? Yes

CDIA Project Screening

CDIA Project Screening Tool


Financiers and project developers of medium-sized cities in Asia and the Pacific

Read more...

CDIA Project Screening  

CDIA Project Screening Tool

This tool aims to help cities identify and profile investments, particularly those prioritized in climate resilience strategies, to enhance opportunities for downstream finance.

CDIA focuses on developing investments in urban infrastructure and service between city-level urban strategies and implementing specific infrastructure projects with domestic, international, public, or private financing.

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse


Financiers and project developers of medium-sized cities in Asia and the Pacific

Phase

Type – The CDIA Project Screening Tools are free to download through www.caid.asia website but require creation of account

Maturity

Region

Sector-specific? Yes

PREP

The Partnership for Resilience and Preparedness data tool

Decision makers

Read more...

PREP  

The Partnership for Resilience and Preparedness data tool

PREPdata is a map-based, open data online platform that allows users to access and visualize spatial data reflecting the past and future climate, as well as the physical and socioeconomic landscape for climate adaptation and resilience planning. The platform is continuing to evolve through the input of PREP partners and PREPdata users. It is a flexible tool for climate adaptation planning, designed to address many of the gaps and challenges adaptation practitioners face.

Distinguishing elements of PREPdata:

  • A visual, map-based platform that is user-friendly and customized to different contexts and skill levels;
  • Active curation of datasets focused on climate resilience, streamlining the process of accessing and navigating to relevant data;
  • A commitment to global coverage, with an emphasis on increasing access to datasets for the Global South, and support for applications across different scales and geographies; and
  • A user-needs based strategy for platform development, utilizing the knowledge and network of the partners and platform users to enable continuous improvement.

View case study

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

Decision makers

Phase ,

Type

Maturity

Region

Key aims Open source/online software

Sector-specific? Yes

Climate Lens


Canada's Infrastructure owners/ project planners (Infrastructure seeking federal fundings)

Read more...

Climate Lens  

The Climate Lens is a horizontal requirement applicable to Infrastructure Canada’s Investing in Canada Infrastructure Program (ICIP), Disaster Mitigation and Adaptation Fund (DMAF) and Smart Cities Challenge. It has two components the GHG mitigation assessment, which will measure the anticipated GHG emissions impact of an infrastructure project, and the climate change resilience assessment, which will employ a risk management approach to anticipate, prevent, withstand, respond to, and recover from a climate change related disruption or impact.

As part of the Investing in Canada plan, applicants seeking federal funding for new major public infrastructure projects will now be asked to undertake an assessment of how their projects will contribute to or reduce carbon pollution, and to consider climate change risks in the location, design, and planned operation of projects.

The Climate Lens will help infrastructure owners design better projects by assessing their opportunities to reduce carbon pollution and identify when they should be adapting project design to better withstand impacts of climate change (e.g. severe weather, floods, sea-level rise, etc.). A General Guidance document has been prepared to explain the required approach, define the scope of the assessment, and identify the specific information that must be submitted to Infrastructure Canada.

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse


Canada's Infrastructure owners/ project planners (Infrastructure seeking federal fundings)

Phase ,

Type – Available on website

Maturity

Region

Key aims Sustainability

Sector-specific? Yes

ICLEI ACCCRN

ICLEI ACCCRN Process Workbook

Local government

Read more...

ICLEI ACCCRN  

ICLEI ACCCRN Process Workbook

The ICLEI ACCCRN Process (IAP) enables local governments to assess their climate risks in the context of urbanisation, poverty and vulnerability and formulate corresponding resilience strategies. The ICLEI ACCCRN Process has been designed in a step-by-step format, divided into 6 phases. Phases 5 and 6 that guide cities in the implementation and monitoring phases will be included in the following edition of the IAP toolkit. The process is also designed to be a continuous cycle of review and refinement, rather than a closed cycle.

The phases are:

  1. Phase 1 of the process will provide all the tools and activities needed to start work with the city. The tools help local governments gain the necessary political and administrative support, establish a climate core team, involve local stakeholders, appropriately share relevant information through a tailored communications plan, and conduct an initial assessment of the city’s progress towards dealing with climate change.
  2. In Phase 2 the main impacts of climate change faced by the city are identified through shared learning dialogues and interactions with the climate core team. The fragile urban systems facing climate threats are also identified and prioritised according to their risk status.
  3. Phase 3 will assist the city government in producing climate vulnerability hotspot maps, in identifying the vulnerable social groups, and in analysing their adaptive capacities as well as those of the impacted urban systems.
  4. In Phase 4, city governments will use the information and analysis from the previous Phases to develop a list of potential resilience building interventions. The tools in this phase help screen and prioritise these interventions, link them to existing city plans, and compile all the information into a City Resilience Strategy.

View case study

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

Local government

Phase

Type – Open source/Online knowledge

Maturity

Region

Sector-specific? Yes

Green Evaluation

Read more...

Green Evaluation  

We base our evaluation of an adaptation project on the increase in resilience the project is likely to provide for the covered geographical area or asset base. This results in the adaptation score.

First, we quantitatively evaluate the benefit of the added resilience, relative to the amount of the financing’s proceeds, on a five-point scale.

The benefit is the forecast reduction in the cost of expected damages caused by extreme weather events. It is based on an entity’s analysis, to which we may apply quantitative adjustments.

Second, we modify the evaluation score determined in the first step, based on our qualitative view of the adequacy of an entity’s quantification approach to determining the resilience benefit.

Third, we may apply additional adjustments in certain cases – for example, for projects that are in developing countries for which the resilience benefit may be understated because the likely significant social benefits are difficult to quantify.

View case study

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

Phase ,

Type

Maturity

Region

Sector-specific? Yes

Developed by
S&P Global Ratings